
Copyright is held by the author / owner(s). 
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012. 
ISBN 978-1-4503-1435-0/12/0008 

Texture-size-independent address translation for virtual texturing

Charles-Frederik Hollemeersch∗ Bart Pieters Aljosha Demeulemeester Peter Lambert Rik Van de Walle
Ghent University - IBBT ELIS - Multimedia Lab†

1 Introduction

Virtual texturing (VT) is a promising technique to increase texture
resolution and uniqueness in real-time applications such as GIS and
games. VT manages large texture data sets by splitting the texture
data into smaller tiles and assigning a unique address to every tile.
Only the visible subset of these tiles is then kept in graphics mem-
ory. Any newly-visible tiles are loaded on-demand from disc. Sev-
eral recent games such as id Software’s Rage and Splash Damage’s
Brink have used VT to manage their texture data at run-time.

We first briefly describe how the render is traditionally implemented
for VT [van Waveren 2009] [Sugden and Iwanicki 2011] [Holle-
meersch et al. 2010]. When sampling the VT in the shader, we first
calculate the tile address based on the texture coordinates. This tile
address is then used to do a look up into the translation lookup table
(TLT). The TLT is itself a texture that contains a texel for every tile
in the virtual address space. The contents of the TLT’s texels give
us the location of the tile in a second texture containing the cur-
rently loaded tiles. The final sample color value is then determined
by a lookup into this cache texture.

One of the main promises of virtual texturing is that the run-time re-
source demands are no longer relative to the whole dataset size but
instead become relative to the screen size. While currently exist-
ing practical implementations largely fulfill this promise, the TLT
is one key step which is still dependent on the texture dataset size.
In all the aforementioned implementations, a single entry is needed
in the TLT per virtual tile address. When using very large virtual
address spaces this step quickly becomes a bottleneck since both
generation and memory use of the TLT become prohibitively ex-
pensive. For example for a 106×106 texture with 128×128 pages,
the TLT alone already uses 341 megabytes of data. This is in the
order of the cache size needed for HD screen resolutions and could
thus be better spend on caching more data.

In this work, we present a new approach to eliminate the TLT. In-
stead of having a data structure that contains an entry for every vir-
tual page, we propose a system that allows efficiently querying if a
page is available in the cache. The rest of the virtual texturing pro-
cess, streaming, caching, and the final look-up in the cache tile are
largely unmodified. We will show that our method is sufficiently
fast for real-time use on current-generation graphics hardware.

2 The Cache Query Tree

There are several ways to efficiently implement querying if an item
is available in a list. Caches and balanced search trees are two com-
mon ways to approach this problem. However, when implemented
on a GPU, such systems reduce efficiency due to lots of diverging
branches on the massively-parallel architecture of the GPU.

Since we know the maximum number of items up front (i.e. the
number of tiles that fit in the cache) we can easily use a sorted

∗charles.hollemeersch@elis.ugent.be
†The research activities that have been described in this work were

funded by Ghent University, the Interdisciplinary Institute for Broadband
Technology (IBBT), the Institute for the Promotion of Innovation by Sci-
ence and Technology in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWOFlanders), and the European Union.

list instead. This list can then efficiently be searched with a binary
search in a fixed and constant number of steps. This search can also
easily be implemented without diverging code paths in the pixel
shader threads. In fact, our system can be implemented without any
branching at all making it amenable to platforms which do not sup-
port dynamic branching such as the WebGL standard or embedded
hardware.

Practically, our system consists of two data structures. The first is
a search table that contains the tile addresses of the tiles present
in the cache. This list is sorted by increasing tile addresses. The
second data structure is a list where the i’th element contains the
cache address of the i’th element in the search table. When T is
the opaque address of the tile to find and N is the number of cache
items we can find the item as follows:

C = unavailable
Min = 1
Max = N
for i := 1 to log(N) step 1 do

Mid = (Min+Max)/2
id = tex1d(searchTab,Mid)
if id == T then C = tex1d(searchTab,Mid) fi;
if T > id then Min := Mid+ 1;

else Max := Mid− 1; fi
od
Note that in practice these two tables are stored as a N×2 texture.
Since log(N ), is a constant the loop can easily be unrolled and im-
plemented without branching, using only a single texture read.

Its up to the application to handle the situation where a page is not
available in the cache. For example, in our application we currently
do another search for a lower resolution version of the data on the
next mipmap level. Note that only about 1% of the pixels need to
follow this path since unavailable tiles will be streamed in by the
cache manager.

3 Results

We have implemented the proposed method in our virtual texturing
system. Our updated system now supports almost arbitrary texture
address spaces. Most importantly, run-time performance and mem-
ory use are only dependent on the screen resolution. We did not
notice any significant performance degradation compared to our
traditional VT implementation since our system bottleneck is not
the VT shader.

References

HOLLEMEERSCH, C., PIETERS, B., LAMBERT, P., AND VAN DE
WALLE, R. 2010. Accelerating virtual texturing using cuda. In
Gpu Pro: Advanced Rendering Techniques. ch. 10.2, 623–641.

SUGDEN, B., AND IWANICKI, M. 2011. Mega meshes: Modelling,
rendering and lighting a world made of 100 billion polygons. In
Game Developers Conference 2011.

VAN WAVEREN, J.-P. 2009. id tech 5 challenges. In SIGGRAPH
2009 Beyond Programmable Shading Course Notes.


